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Abstract— Objective: This work proposes a machine-learning
based system for scalp EEG that flags an alarm in advance
of a clinical seizure onset. Methods: EEG recordings from 12
patients with drug resistant epilepsy were marked by an expert
neurologist for clinical seizure onset. Scalp EEG recordings
consisted of 56 seizures and 9.67 hours of interictal periods.
Data from 6 patients was reserved for testing, and the rest was
split into training and testing sets. A global spatial average of
a cross-frequency coupling (CFC) index, Īcfc, was extracted
in 2s windows, and used as the feature for machine learning.
A multistage state classifier (MSC) based on random forest
algorithms was trained and tested on this data. Training was
done to classify 3 states: interictal baseline, and segments prior
to and following EG onset. Classifier performance was assessed
using receiver-operating characteristic (ROC) analysis. Results:
The MSC produced an alarm 45±16s in advance of clinical
seizure onset across seizures from the 12 patients. It performed
with a sensitivity of 87.9%, a specificity of 82.4%, and an
area-under-the-ROC (AUC) of 93.4%. On patients for which it
received training, performance metrics increased. Performance
metrics did not change when the MSC used reduced electrode
ring configurations. Conclusion: Using the scalp Īcfc, the MSC
produced an alarm in advance of clinical seizure onset for all
12 patients. Patient-specific training improved the specificity
of classification. Significance: The MSC is non-invasive, and
demonstrates that CFC features may be suitable for use in a
home-based seizure monitoring system.

Index Terms—Epilepsy, clinical seizure onset, early detection,
cross-frequency coupling features, machine learning, EEG, ran-
dom forest, multi-stage state classification.

I. INTRODUCTION

EPILEPSY affects over 50 million individuals in the world
[1]. Despite major advances in recent years, pharma-

cotherapy controls seizures in only 70% of the epileptic
population [2]. The remaining 30% of patients have what is
termed medically refractory, or drug-resistant epilepsy [3]. The
primary treatment for these patients is resective surgery, but
only a fraction (perhaps as low as 6%) of patients are eligible
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[4]. Moreover, in patients that do undergo resective surgery,
only half of them will achieve long-term seizure freedom [5].
As such, there is a significant number of people living with
the risks of epilepsy, the most feared of which may be sudden
unexpected death in epilepsy (SUDEP) [6]. There exists a need
for seizure detection and monitoring devices to alert caregivers
to the occurrence of seizures in patients whose disease is not
controlled [7].

False positives in these systems are a considerable problem.
Pioneering seizure detection work using electroencephalo-
grams (EEG) by Gotman [8] demonstrated low specificity;
only 22% of detections were seizures. This was later improved
to a sensitivity of 76% with a false detection rate of 0.84
per hour [9]. Subsequent studies have incorporated machine
learning techniques in order to handle larger feature sets, but
in several cases they were unable to outperform older systems
[10], [11], or the specificity of the system was not reported
[12]. Since the late 1990’s, state of the art systems focus on
patient specificity: they are able to achieve a sensitivity of
100%, with false detection rates around 0.02 per hour [13].
Patient specific algorithms have achieved these kinds of results
using various wavelet-based, non-linear, and spectral features
in combination with support vector machines (SVM) [14],
recurrent neural networks [15], and logic based algorithms
[16]. However, it remains a challenge to detect seizures using
features that can generalize across patient datasets, and still
provide a low rate of false alarms.

In addition to generalizing across patients, a desirable
function of detection systems is to detect seizures as early as
possible [17]. Early detection approaches are often capable of
detecting seizures within several seconds of onset; published
examples of detection latencies include 10s [18], 9.3s [13], 8s
[14], and 7s [16]. Others have detections prior to the seizure
onset, for example 4-10s [19]. A recent canine study was able
to forecast seizure onset with a mean Time-in-Warning of 0.1
for 1-hr preictal time [20].

A novel feature which could allow improvements for early
detection of seizure onset is pathological cross-frequency cou-
pling (CFC). Phase-amplitude CFC was shown to be elevated
near seizure initiation in the iEEG recordings of children with
refractory epilepsy [21]. CFC of delta with high frequency
oscillations (HFO) during seizures in the iEEG of patients
with extra-temporal lobe epilepsy could discriminate between
seizure and non-seizure generating tissues [22]. Delta-HFO
CFC was also shown to discriminate between epileptogenic
and non-epileptogenic tissues in the brain recorded during non-
seizure periods when patients were experiencing non-REM
sleep [23]. Delta-HFO CFC measures have also been shown to
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identify seizure states, as well as the transitions between them
using unsupervised machine learning [24] and have been used
as features to detect seizures in long term iEEG recordings
[25]. The ability of CFC to discriminate epileptic activity both
spatially and temporally in the iEEG suggests that it may
also be a viable feature for detecting seizure state transitions
leading up to seizure in the scalp EEG.

This paper presents a state-transition detection system for
scalp EEG in the form of a multistage state classifier (MSC).
The novel aspects of this work are 1) the proposed MSC
structure, and 2) the use of CFC features for machine learning
classification of seizure states. In Fig. 1, we show an example
of the MSC’s action. In the following sections we will describe
the patient dataset, the machine learning-based pipeline, and
the specific signal features that make this possible.

II. MATERIALS AND METHODS

A. Patient Recordings of Seizure States

In this section, we first describe the patients selected for
this study, and then explain how the data was organized for
use in the machine learning pipeline.

1) Patient Overview: Patient recordings were collected
from 12 subjects who underwent pre-surgical evaluation at
the Toronto Western Hospital Epilepsy Monitoring Unit. The
dataset is divided into two subsets: Group 1 (N=6, patients 1-
6) with recordings split between both training and testing, and
Group 2 (N=6, patients 7-12) reserved exclusively for testing
purposes. Patients were selected on the availability of recorded
interictal and clinical seizures separated by hours. Patients in
Set 1 had the additional constraint of available simultaneous
iEEG, scalp EEG, and video recordings. The simultaneous
iEEG was used to define electrographic (EG) seizure onset
only, for machine learning training purposes. Electrographic
seizure onset was defined by an expert neurologist at the first
signs of epileptiform activity within the recorded EEG alone.
Clinical seizure onset was defined by the same observer using
visual changes in patient behavior such as loss of motor control
and convulsions. All available patients meeting these criteria
were included. Informed consent was obtained from each
patient and the ethics committees of the affiliated institutions
approved this study. The dataset is summarized in Table I.

A total of 56 seizures and 9.67 hours of interictal recordings
were collected. All available seizure and interictal data that
was free from large-scale movement artifacts were included
in this study. Seizure epochs consist of the complete seizures
events with some baseline prior and subsequent. Sampling
rates were between 500 to 1,024 Hz, depending on the patient,
and all EEG recordings were FIR notch filtered at 60 Hz
and harmonics up to the Nyquist frequency in each patient.
All recordings used a global reference at the Fpz electrode
location. All patients’ scalp EEG used 25 channel recordings
placed according to the 10-20 system, as well as channels
recording left and right sphenoidal, supraorbital, electroocu-
logram (EOG), and an electrocardiogram (ECG) for a total
of 32 channels. The exception was patient 4, in which case
the EEG used 19 channel recordings placed according to the
10-20 system as well as EOG and ECG recording channels.

In order to keep the channels involved in analysis consistent
across patients, only the 19 EEG channels common across
all patients were used. EOG and ECG recordings were not
included in the analysis. The iEEG recordings were used only
to identify electrographic seizure onsets.

In all seizures from the dataset, EG and clinical seizure
onset were marked by an expert neurologist. Patient 4 exhib-
ited clear EG onset, but since the seizures were nocturnal and
non-convulsive, no clear clinical onset was apparent.

2) Creation of Training and Testing Datasets: Recordings
for patient Group 1 were divided between training and testing
sets as described in Table I. Half of recorded seizures
from each patient, and a total of 2.75 hours of interictal
recordings, were set aside for training. This training set was
later randomly subdivided into validation subsets during a 5-
fold cross-validation process. The remaining seizures and 2.41
hours of interictal recordings were set aside for testing. All
recordings from patient Group 2 were set aside for testing. In
total, 33 seizures and 6.92 hours of interictal recordings were
for used testing.

All interictal test segments were extracted in roughly 10-
minute epochs. For seizure test epochs, the largest of the
per-patient average EG-to-clinical onset duration was 66s.
Therefore, seizure epochs contain the entire seizure with an
additional 66s of recording leading up to the clinical seizure
onset. For both training and testing sets, the long epochs
were segmented into 2s non-overlapping windows for feature
extraction.

B. Global Cross-Frequency Coupling Feature

The feature vector extracted from the 2s scalp EEG win-
dows is a global spatial average (across EEG channels) of a
CFC measure. Feature extraction was performed in MATLAB
(The MathWorks, Natick, MA, U.S.A.) following the process
described below.

1) Continuous Wavelet Transforms: Time-frequency spec-
trograms were obtained by applying a continuous wavelet
transform (CWT), specifically a complex Morlet wavelet, on
the EEG time-series recordings x(t),

W (s, τ) =

∫
t

x(t)φ∗s,t(t)dt (1)

where,

φ∗s,t(t) =
1√
s
φo(

t− τ
s

) (2)

is the Morlet basis function with ∗ denoting the complex
conjugate. The Morlet is defined as,

φo(t) =
1√
2π
eiωct− t2

2 (3)

The scales were transformed to frequencies f from the angular
frequency ωc using the relation ωc = 2πfs = 5.1 rad s−1. The
CWT produces a complex valued coefficient matrix,

W (f, t) = w(f, t) + jw̃(f, t) (4)

from which the amplitude and phase of the signal is obtained
over time, per the sampling rate, and frequency ranges per the
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Fig. 1. The alarm (vertical red line) marked by automated multistage state classification (MSC) of the EEG recording of patient 1, seizure 2. The alarm is
triggered solely from scalp EEG features. The alarm output by the MSC precedes electrographic and clinical seizure onset times (vertical purple lines) by
51s and 61s respectively. The onset timings were determined by an expert neurologist. Recordings were made at 500Hz, referenced to the Fpz electrode, and
notch filtered at 60Hz and harmonics up to the Nyquist frequency.

desired bands. For this work, a Morlet CWT with bandwidth
of 6Hz was used to obtain spectrograms over 2 frequency
ranges for each 2s epoch: a low frequency range denoted
fL ∈ (1, 1.1, 1.2, ..., 10)Hz and a high frequency range
denoted fH ∈ (20, 21, 22, ..., 150)Hz. The low frequency
range was selected to cover the delta and theta ranges as
in [24], while the high frequency range was cut off at 150 Hz
to encompass the maximal extent of the 3 dB-below-maximum
of the average CFC values, whose computation is discussed
below. CWTs were computed with a buffer of 2.87 seconds on
either side of the epoch to mitigate the end effects introduced
by the CWT filtering operation at the low frequency scales. A
CFC measure can now be computed from the complex wavelet
coefficients of fφ and fA for each 2 second epoch.

2) Global Index of Cross-Frequency Coupling: The CFC
measure selected is Tort’s modulation index [28], from here on
referred to as the index of cross-frequency coupling (Icfc). As
described by Tort, Icfc assesses coupling between an ampli-
tude envelope time series, here A(t, fH), and an instantaneous
phase time series, here φ(t, fL). These are derived from the
respective complex wavelet coefficients over each 2s window
t,

A(t, fH) = |w(t, fH) + jw̃(t, fH)| (5)

φ(t, fL) = arctan
w̃(t, fL)

w(t, fL)
(6)

The φ(t, fL) is binned into N = 18 bins of 20◦ each, and the
mean of A(t, fH) is computed in each bin, and normalized by
the sum over all bins according to:

pj(t, fH , fL) =
〈A(t, fH)〉j∑N
k=1〈A(t, fH)〉k

(7)

Now, pj represents a discrete probability density value, where
j indicates the phase bin number which is associated with fL.
An entropy measure,

H(t, fH , fL) = −
N∑
j=1

pj(t, fH , fL) log(pj(t, fH , fL)) (8)

can be determined and normalized to obtain the Icfc,

Icfc(t, fH , fL) =
Hmax −H(t, fH , fL)

Hmax
(9)

where Hmax is the maximum possible entropy value, which
for a uniform distribution has a value Hmax = log(N). The
global Icfc, denoted Īcfc, gives a global measure of the CFC
characteristics observed over multiple EEG recording channel
locations. For a multivariate time series xm(t) having m =
1, 2, ...,M channels:

Īcfc(fA, fφ) = 〈Icfc(fA, fφ)〉M (10)

where 〈...〉M denotes the spatial average over M channels.
Īcfc computed over the frequency ranges fH and fL results
in a 131x91 comodulogram, where each {fH , fL} pair corre-
sponds to a feature, of which there are P = 11, 921 in total.
The comodulogram can be denoted as a feature vector xp,
where {xp ∈ [0, 1], p = 1, 2, ..., P}.

An example of the variation in the Īcfc comodulogram
leading up to and during Seizure 1 of Patient 1 is shown in
Fig. 2.

3) Īcfc Feature Vector Thresholding: A final step in the
feature extraction, taken to reduce computational burden dur-
ing training and testing of the MSC, is to apply a binary
threshold to the Īcfc. An example of this process is shown
in Fig. 3. The original Īcfc comodulogram is shown in Fig.
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TABLE I
PATIENT DATASET

Training Testing

Patient No. Sampling Rate (Hz) No. of Seizures Interictal Data (hrs.) No. of Seizures Interictal Data (hrs.)

1 500 1 0.50 1 0.46

2 500 10 0.39 10 0.17

3 500 2 0.36 2 0.49

4 1000 7 0.50 6 0.50

5 1000 2 0.50 1 0.33

6 1000 1 0.50 1 0.46

7 500 3 1.47

8 500 4 1.00

9 1024 1 0.23

10 512 2 0.87

11 512 1 0.27

12 512 1 0.66

Totals 23 2.75 33 6.92

* Recordings for Patients 7 - 12 were used for testing only in the proposed machine-learning system.

No.: Number; sec.: seconds; hrs.: hours.

Fig. 2. Variation of global cross-frequency coupling in scalp EEG over time. (A) Example EEG channel F4 from patient 1, seizure 2, and the corresponding
continuous wavelet transform. The wavelet is z-score normalized over time within each frequency band. (B) The cross-frequency coupling index comodulogram
at example 2s windows for channel F4. (C) The global average of cross-frequency coupling index across all channels. This feature is thresholded and used
for machine learning classification.

3 (A). As shown in Fig. 3 (B), the distribution of values in
the Īcfc is often skewed. The elements of xp can be sorted in
ascending order, and a threshold thcfc can be selected at the
nth quantile of their distribution. All elements above threshold
are set to 1, all elements below are set to 0. This thresholding

procedure was carried out over two regions, as shown in Fig. 3
(C), in order to preserve some of the high frequency (60Hz+)
content which would otherwise be eliminated. The exact value
of thcfc is determined for each classifier within the MSC
during training via 5-fold cross-validation (CV), an example
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Fig. 3. Feature vector for state classification. (A) Icfc is calculated for all
selected channels, and the cross-channel spatial average produced, referred to
as Īcfc. An example of Īcfc is shown for a 2s window from patient 1. (B)
The distribution of values contained in the Īcfc are displayed in a histogram.
A threshold thcfc is applied; red bars indicate values that are above thcfc in
the distribution. (C) Īcfc after thresholding at the thcfc quantile, performed
in two separate regions in order to preserve high-frequency CFC information.
This matrix of binary values is reshaped into the feature vector for machine
learning. (D) The thcfc value is selected through 5-fold cross-validation (CV)
of the classifier during training.

of which is shown in Fig. 3 (D).

C. Machine Learning Classification Approach

The general machine learning approach to supervised de-
tection is described in Fig 4 (A), where three main stages
of the project are outlined. Firstly, the EEG data is separated
into training and testing sets, as discussed earlier. Secondly,
features from the training set of EEG are extracted (in this
case, the Īcfc) and used to train and cross-validate the MSC.
Finally, the trained MSC is assessed on the set of data reserved
for testing. The overall structure of the MSC, and the training
and testing approaches taken, are outlined in this section. The
MSC was implemented in Python using Scikit-learn machine
learning libraries. [29]

1) State Labels for Training: The state labels used for
training purposes are described in Fig 4 (B). Feature vectors
extracted from interictal baseline windows are labeled II . Fea-
ture vectors extracted from windows within the 10s preceding
EG are labeled S1. Feature vectors extracted from windows
within the 10s following EG are labeled S2.

The rationale for these states are as follows. Seizure onset is
most clearly defined in the EEG by the EG. While the EG may
not be clearly visible in the scalp EEG, it is well defined by
the simultaneously recorded iEEG, and used clinically to help
delineate the epileptogenic zone (EZ). The clinical rationale
for selecting EEG segments pre and post EG is twofold: firstly,
by identifying a state before EG onset and distinguishing it
from baseline, it might be used for early detection, minimizing
alarm latency. Secondly, by combining information about two

state transitions, the rate of false positive alarms may be
reduced. The rationale for the 10s window length is from
previous work [30] [24] from our group, where 10s was found
to contain sufficient information to localize the EZ.

2) MSC Structure and Training: The structure of the MSC
is described in Fig. 4 (C). The MSC consists of a three random
forest (RF) classifiers, with basic logical decision thresholds
governing internal state transitions. An RF classifier is an
ensemble learning method that averages the output of many
tree-structured classifiers produced from the same training data
set. The result is a low-noise, low-bias classifier [31]. The
general RF algorithm is described in [32].

The MSC operates as follows. It starts in the internal
baseline state, II . The Īcfc feature vector is passed through the
first RF classifier, called IIS1, which makes a decision if the
vector belongs to the II or S1 state. If the classifier output
is below a set decision threshold throc, the MSC remains
in the II internal state, waits for new input, and repeats. If
the classifier output exceeds throc, the MSC moves to the
internal S1 state. A feature vector from the next 2s window
is then tested by the second RF classifier IIS2, which tests
for II vs S2. If this classification falls below throc, the
system falls back to IIS1. If it passes, the third RF classifier
S1S2 tests for S2 vs S1, on the basis that S2 should only
occur following S1, and S2 must be distinct from S1. This
multistage process was intended to increase the specificity
of the system, and to incorporate a-priori information about
the temporal arrangement of S1 and S2 states. Only if the
S1S2 classification exceeds throc is an alarm activated. The
system is subsequently reset to the original state. The value of
throc is determined at the testing stage via receiver-operating
characteristic (ROC) analysis, and the same throc is applied
to each of the RF classifiers.

During training of the MSC, 2 parameters were optimized.
Multi-iteration 5-fold ROC-based cross validation over the
training set was performed for this purpose. Firstly, the optimal
number of estimators in the ensemble for each RF was found
to be 200 for IIS1 and IIS2, and 150 for S1S2. Secondly, the
optimal value for thcfc was found to be the 94th, 95th and
53rd quantiles for IIS1, IIS2, and S1S2 respectively. (This
optimization process was shown for IIS2 in Fig 3 (D).)

3) MSC Testing Performance Assessment: MSC testing was
conducted using the interictal epochs (each roughly 10mins in
duration) and seizure epochs (each consisting of the seizure
plus 66s leading up to clinical onset). Each non-overlapping
2s window within these epochs was tested. For the interictal
epochs, an alarm is a False Positive (FP ), and the lack alarm
is a True Negative (TN ). For the seizure blocks, an alarm is a
True Positive (TP ), and the lack of alarm is a False Negative
(FN ).

The overall performance of the MSC is determined pri-
marily through receiver operator characteristic (ROC) curves.
These curves permit assessment of the system’s optimal perfor-
mance as determined by sensitivity, specificity, and accuracy.
Sensitivity, i.e. the proportion of seizure events detected, is
defined as:
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Fig. 4. (A) Strategy of the MSC project. Firstly, the dataset is divided into training (Group 1) and testing (Group 1 and Group 2) samples. Secondly, the
MSC is optimized using features from the training set. Thirdly, the model is assessed on the testing set. (B) Training of the MSC involves labeling of samples.
S1 and S2 states are defined as the 10s immediately prior to and following the neurologist-identified electrographic onset. The interictal state II is viewed
as baseline. (C) The proposed MSC state logic. The MSC first loops for II to S1 transitions. If the S1 state is achieved, the system tests the subsequent 2s
window for both II to S2 and S1 to S2 transitions. This multistage process is designed to reduce false positives and include a-priori information about the
temporal arrangement of S1 and S2 states. Each decision represents the output of a RF classifier (diamond boxes). An alarm is raised only when transitions
occur sequentially from the II to S1 to S2 states. After an alarm, the system reverts to II . The optimal value for decision threshold throc is selected by
receiver-operating characteristic (ROC) analysis.

Sensitivity =

∑
TP∑

TP +
∑
FN

, (11)

1-specificity, i.e. the proportion of interictal segments that
are falsely classified as seizures, is defined as:

1− Specificity =

∑
FP∑

FP +
∑
TN

. (12)

Accuracy, i.e. the proportion of correct classifications, is
defined as:

Accuracy =

∑
TP +

∑
TN∑

TP +
∑
FP +

∑
FN +

∑
TN

. (13)

In order to produce the ROC curve, throc was applied across
the MSC from [0, 1] in 0.05 increments. For each threshold
level, a (Sensitivity, Specificity) pair is computed. In

addition, three metrics for assessing model performance can
be extracted from the ROC. Firstly, the area-under-the-curve
(AUC). Secondly, a specificity factor ξl which represents the
best Specificity for 100% Sensitivity. Thirdly, we propose
a specificity factor ξe which represents how quickly the model
reaches optimal Sensitivity as a function of Specificity,
defined as follows:

Sensitivity = 1− exp(−1− Specificity
1− ξe

). (14)

The exact value of ξe can be found by curve fitting the
exponential expression to the points of the ROC curve, and
the goodness-of-fit is determined by the R2 value.

Due to the number of seizures (positive events) in this study,
the ROCs demonstrate discrete upward jumps. To report the
performance of the MSC with greater confidence, optimal
Sensitivity, Specificity, and Accuracy values are reported
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from the ξe curve-fit. In all cases in this study, these values are
more conservative representations of MSC performance than
their counterparts directly from the original ROC.

III. RESULTS

A. Global CFC is a seizure state marker
An example of the variation in Īcfc between training states

is shown in Fig. 5. CFC between delta (2-4Hz) and low
gamma (20-50Hz) rhythms is strongest in the seizure states.
This feature forms the underlying basis for distinguishing
interictal II vs S1, S2 states. The feature is much clearer in
the iEEG due to the reduced noise in the recording, but is
still visible in the scalp due to the averaging properties of the
Īcfc computation. As seen in the iEEG, the pathological CFC
extends beyond the low gamma into the HFO (>80Hz) range,
but the HFO contribution cannot be detected at the scalp.

Differences between the S1 and S2 seizure states can be
seen in two ways. Firstly, S1 demonstrates a stronger CFC
than S2 in the delta-gamma range. Secondly, S1 demonstrates
a theta (4-8Hz) rhythm modulating the low gamma which is
not seen in S2. These features appeared consistently across
the patient dataset, enabling the MSC to perform reasonably
well even in the 6 patients for which it received no training.

B. Classifier Performance using All Channels
Performance of the MSC was assessed across various sub-

groups of the testing set: Group 1 (for which the MSC received
training), Group 2 (for which the MSC received no training),
and All patients. The ROC curve for each group is shown in
Fig 6. The MSC performed well for all groups, but best for
Group 1, as indicated by the AUC = 0.99, 0.92, and 0.93 for
Group 1, 2, and All respectively. A similar trend is shown in
the ξe curve fit, for which ξe = 0.99, 0.90, 0.92 for Group 1, 2,
and All respectively. Group 1 also achieved 100% sensitivity
with the highest specificity, as shown by the ξl = 0.96, 0.83,
0.86 for Group 1, 2, and All respectively. Patient specific
information in Group 1 seems to increase the specificity of
the system, although performance is reasonable in Group 2
for which no training occurred.

For Group 1, the MSC achieved sensitivity of 97.5%,
specificity of 95.0%, and an overall accuracy of 95.0%. For
Group 2, sensitivity of 85.2%, a specificity of 79.9%, and an
overall accuracy of 79.9%. For the All patient set, the MSC
achieved a sensitivity of 87.9%, a specificity of 82.4%, and
an overall accuracy of 82.4%. This comparison is summarized
in Table II, alongside the ξe and ξl from the ROC curves for
each set. The seizure alarm time does not appear to differ
significantly between Group 1 vs Group 2 vs All.

The alarm times produced by the MSC prior to clinical
seizure onset are shown in Table III for All patients. These
alarm times are reported for the throc that corresponds to
ξl=0.86, where 100% sensitivity is achieved for greatest pos-
sible specificity across the All patients. For comparison, the
alarm times prior to electrographic seizure onset are also
shown for Group 1 patients, since EG onset (used only during
the training process) was not a requirement for Group 2.
Across all tested clinical seizures (Ns=33), alarm was sounded
45±16s (mean ± standard deviation) prior to clinical onset.

C. Classification using Reduced Channel Sets

A desirable characteristic for the MSC is to function on
a reduced channel set for purposes of mobility and ease of
use. Accordingly, the performance of the MSC was explored
as a function of scalp EEG channel coverage that might
occur in a headband-type device. The set of 19 channels was
reduced to two new circumferential ring subsets of 10 and
8 channels respectively. The CZ electrode was not included.
These ring configurations are shown in Fig 7, along with the
ROC performance for each configuration.

The AUC values for the three configurations differ by
only 0.06%. The ξe specificity factor varies only by 0.012.
Detection latencies (reported for the throc corresponding to
ξl for each channel subset) are shown in Table IV, along
with sensitivity, specificity and accuracy metrics. Sensitivity
differs by 1.9%, specificity by 1.5%, and accuracy by 1.5%.
The pre-clinical seizure alarm times do not appear to be
significantly different. Overall, performance does not appear
to be influenced by the choice of electrode subset.

IV. DISCUSSION

A. Existing EEG-based State Detection

Computerized monitoring of EEG states in a clinical setting
was achieved with reasonable success as early as the early
1990’s [34]. These systems suffered from low specificity and
sensitivity. In order to combat these issues, systems began to
employ patient-specific tuning [13]. In order to further address
false positive rates, some systems are invasive [35]. Such
systems are generally viewed as obtrusive, which may limit
their adoption [17]. The MSC which we propose does not
have these restrictions: it functioned well for Group 2 patients
that the system never trained for, and uses a convenient set of
scalp channels. Patient-specific information, however, is very
helpful to decrease the false positive rates, as seen by the
performance for Group 1 patients in Fig. 6.

Table V contains a summary of recent seizure detection
methods. Contrasting these studies with the current work,
a number of points come to light. Firstly, the number of
patients (Np = 12) and seizures (Ns = 56) used in this
study is rather low, but still within the range of previously
published work. The relative dominance of the number of
seizures from Patients 2 and 4, which contribute large portions
of both training and testing data, is balanced by the patient
variability (Np = 12). Secondly, the sensitivity achieved by
the MSC (87.9%) is comparable to other studies, and the speci-
ficity (82.4%) is on the low range. However, both sensitivity
and specificity are comparable with the inclusion of patient-
specific information (97.5%, 95% respectively). Thirdly, the
detection ahead of clinical seizure (45 ± 16s) permits a
window for intervention which other detection methods may
not offer.

B. Īcfc in Scalp EEG

The proposed MSC has achieved a high sensitivity and
specificity by making use of the Īcfc feature. CFC can be
involved in normal brain processes such as memory encod-
ing [36] or auditory processing [37]. However, it can also
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Fig. 5. Īcfc is shown for three ten second time segments corresponding to the three epileptic states of interest and in the two domains of interest. From left
to right: interictal (II ), pre-EG seizure onset (S1), and post-EG seizure onset (S2). The top and bottom panels show Īcfc characteristics in the scalp EEG
and iEEG domains, respectively. In the EEG, Īcfc was the color bars on the right for each domain. Each comodulogram depicts CFC characteristics using
the same frequency ranges for amplitude modulated (vertical axis) and phase modulating (horizontal axis) rhythms.

TABLE II
MSC PERFORMANCE METRICS ACROSS TEST SETS

Pre-Clinical Seizure

Patient Group Alarm Time (s)* AUC (%) Accuracy (%) Sensitivity (%) Specificity (%) ξe ξl

Group 1 48 ± 16 98.8 95.0 97.5 95.0 0.99 0.96

Group 2 47 ± 15 91.6 79.9 85.2 79.9 0.90 0.83

All 45 ± 16 93.4 82.4 87.9 82.4 0.92 0.86

* mean ± standard deviation

be involved in pathology: in epilepsy, CFC has been tied
to seizure states and epileptogenic tissue [21] - [25]. The
global averaging across channel locations of the scalp CFC
map, and the subsequent thresholding by thcfc, appear to be
an appropriate selection process for identifying seizure state
transitions in scalp EEG. By training the MSC on the S1 and
S2 states, as seen in Fig 4 (B), CFC that is specific to seizure
states appears to be highlighted.

It is important to note that the proposed MSC functions
on the scalp EEG with no preprocessing beyond the notching
out of electrical line noise and harmonics. This might lead to
concerns about spurious Icfc, which can result from spikes and
fast activities in pre-ictal and ictal periods [26]. The spatial
averaging inherent to the computation of the global CFC
index (Equation 10) as a biomarker may reduce the influence
of spurious CFC from individual channels. The statistical
relevance of Icfc features to the EZ was assessed by two
previous studies from our group: firstly, in surrogate analysis
on iEEG [22], and secondly, by noise simulation in scalp
EEG [30]. In the current study, while the relationship between

fast activities and the measured Īcfc is not directly assessed,
the performance metrics for the MSC on Group 1 patients
especially would indicate that the machine-learning system
is able to differentiate between spurious and physiologically-
relevant CFC.

C. Early Seizure State Detection

The proposed MSC generated an alarm 43 ± 17s in advance
of the clinical seizure onset. This early detection capability is
quite remarkable given that it does not appear to change with
patient-specific information, which does help to reduce false
positive rates. Many published seizure prediction systems lean
towards patient-specific tuning of the feature set in order to
achieve success. However, in this case, the Īcfc appears to
capture something common across the entire patient dataset.
We propose that shifts in the Īcfc mapping of whole-scalp
EEG are being detected before the visual changes in EEG
that occur at electrographic onset. The global aspect of the
Īcfc captures a trend across the entire scalp which appears to
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Fig. 6. MSC performance across testing subsets. The green curve represents
performance on Group 1, for which the system received training. The turquoise
curve represents performance on Group 2, whose seizures were not used
for training. The black curve represents performance on all testing data.
Inset: Each ROC represented by (sensitivity, specificity) points instead of
a continuous curve. Faded lines represent ξe curve fits for each ROC. ξe and
ξl values are indicated on the specificity axis above the inset. Np = number
of patients, Ns = number of seizures

TABLE III
SEIZURE ALARM INTERVALS PER PATIENT

Mean Alarm to Mean Alarm to

Patient No. of seizures Clin. Onset (s) * EG Onset (s) * ‡

1 1 61 47

2 10 41 36

3 2 53 35

4 6 non-convulsive† 60

5 1 30 20

6 1 55 35

7 3 43

8 4 35

9 1 58

10 2 59

11 1 57

12 1 58

Overall: 33 45 ± 16 (33) 43 ± 17 (21)

* population mean ± standard deviation (No. of seizures)

‡ Only scalp EEG used for patients 7-12.
† Patient 4’s seizures were nocturnal and non-convulsive, so only EG
onset was defined. A 66-second segment leading up to EG onset was
used for testing.

No. = number; Clin. = clinical; EG = electrographic

contain useful information regarding state transitions involved
with an impending seizure event.

For the pre-clinical seizure alarm times of the reduced
channel sets, as summarized in Table IV, it is encouraging
that using only 8 channels of scalp EEG, the MSC is able

Fig. 7. MSC performance using information from different channel sets. The
purple ROC represents performance using an upper ring of 8 channels (Fz,
F3/4, C3/4, P3/4, Pz). The orange, a lower ring of 10 channels (Fp1/2, F7/8,
T3/4, T5/6, O1/2). The black, All channels. Inset: Each ROC represented
by (sensitivity, specificity) points instead of a continuous curve. Faded lines
represent ξe curve fits for each ROC; Lower and All overlap. ξe and ξl values
are indicated on the specificity axis above the inset. Overall, performance does
not appear to change significantly across channel subsets. Np = number of
patients, Ns = number of seizures

to demonstrate comparable alarm times vs using 19 channels.
This suggests that, with further testing involving long-term
patient recordings, this MSC strategy could be valid for a
home-based wearable EEG device.

V. CONCLUSION

It is possible to detect a pre-clinical seizure state transition
using CFC features from the scalp EEG. A global index
of cross-frequency coupling, Īcfc, was used as the feature
for a multistage state classifier (MSC) based on random
forest algorithms. The system was able to provide alarms
45±16s ahead of seizure onset with a sensitivity of 87.9%,
and a specificity of 82.4%. On patients for which it received
training, sensitivity and specificity increased to 97.5% and
95.0% respectively. Even though the MSC was trained on a
standard 10-20 system set of electrodes, the performance was
not affected significantly when tested on reduced subsets of
electrodes. This gives rise to the possibility of implementation
in a headband-type wearable device for home-monitoring
applications that would enhance the quality of life for epileptic
patients.
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